Turbine Meter TRZ 03

PRODUCT INFORMATION

Serving the Gas Industry Worldwide

Methode of operation, Construction

Methode of operation

The TRZ 03 turbine meter is a flow meter suitable for gas measurement in compliance with EN 12261 and OIML, where the rate of flow is indicated by a mechanical totalizer in units of volume (cubic meters at flowing conditions) under prevailing pressure and temperature. The gas flow is constricted to a definite cross section and drives a coaxially mounted turbine wheel. The speed of the turbine wheel, which is proportional to the flow rate, is reduced by gearing and transmitted to the mechanical digital index.

Construction

The meter case comprises the measuring element with the turbine wheel. A flow straightener located upstream of the measuring element substantially eliminates turbulences and swirl from the gas flow and directs the gas onto the turbine blades.

The rotary motion generated by the turbine wheel is transmitted by a magnetic coupling from the pressurized meter case to the unpressurized meter head. The number of rotations is reduced by gearing in the meter head, which can be adjusted by selecting an appropriate pair of adjusting gears, so that cubic meters at flowing

conditions are indicated by the mechanical totalizer. A reed contact (or an inductive sensor) located on the mechanical totalizer provides low-frequency pulses whose number is proportional to the volume at actual conditions flowed through.

Inductive high-frequency sensors scan the turbine wheel (HF 3) and the reference wheel (HF 2). The latter is a cam wheel located on the same shaft as the turbine wheel which enables the turbine wheel to be monitored. In the TRZ 03-E design, the gas meter operates without a meter head. This gas meter has only the electronic pulse transmitters HF 2 and HF 3 instead of the mechanical totalizer.

Features, Materials

Features

LF-Pulse transmitter (in the meter head)

Standard: reed contact Alternatively : inductive pulse transmitter Option: up to 3 LF pulse transmitters possible

HF-pulse transmitter (option)

• In the meter head: Inductive pulse transmitter (HF 1), pulse frequency at Q_{max} approx. 100 Hz.

- In the meter case: Inductive pulse transmitter for scanning - the blades of the turbine wheel
 - (HF 3, from DN 80) - the cams of the reference wheel
 - (HF 2, from DN 100)

All inductive pulse transmitters provide volume pulses in compliance with NAMUR.

Meter head (type "F")

- Protection class IP 65
- Universally readable
- Totalizer unit and HF1 pulse transmitter are easily replaceable on site.

Measuring range: up to 1:30

With high-pressure testing, an expansion up to 1:50 is possible.

Materials

Rotor:

Delrin for DN 50 to DN 200 and PN 10 / PN 16. Aluminium alloy for all other diameters and pressure ratings and for meters with HF sensors.

Aluminium rotors instead of delrin rotors on special request.

Nominal size: DN 50 through DN 600

Pressure rating: PN 10 through PN 100, ANSI 150 through ANSI 600 Special designs with a higher pressure rating are

possible.

Operating temperature range: Standard design: -10°C to +50°C Special designs for higher and/or lower temperatures are possible.

Explosion protection

The pulse transmitters are intrinsically safe; their type of protection is EEx ib IIC T6. Therefore, the TRZ 03 can be operated in Zone 1.

Long service life

pr-connection To connect the pressure transmitter of a PTZ corrector.

Thermowell inside the meter case (option) To accommodate a resistance thermometer.

Inspection report In compliance with EN 10204/3.1B, for strength and leak testing.

Meter case material (standard)

		Р	N	ANSI					
DN	10	16	25	40	150	300	600		
50									
80									
100									
150									
200									
250									
300									
400									
500									
600									
Spheroidal cast iron Cast steel									

Steel, welded

3

Accurancy, Approval, Pressure loss

Accuracy

Error limits (standard):

 $\pm 1.0\%$ for Q_{min} to 0.2 Q_{max}

 $\pm 0.5\%$ for 0.2 Q_{max} to Q_{max}

These limits (half calibration error limit) apply in the event of a steady, swirl-free flow for an operating pressure above 4 bar. Below 4 bar, the calibration error limit is reached.

Higher accuracy available on special request.

Repeatability: ±0.1%

All gas meters are tested in the factory with air under atmospheric pressure.

Approvals

The TRZ 03 turbine meter has been approved by PTB forcustody transfer flow measurement and tested by DVGW.The reference numbers for approval are as follows:MID approval:T10417EU approval:D 81.7.211.10Domestic approval:7.211/93.06DVGW product ident No.:CE-0085BN0291

Pressure loss

The pressure loss Δp stated in the table applies to natural gas at Q_{max} and 1 bar. From this, the pressure loss at actual conditions can be calculated using the following formula:

$$\Delta p_{A} = \Delta p \cdot \frac{\rho_{N}}{0.83} \cdot p_{A} \cdot \left(\frac{Q_{A}}{Q_{max}}\right)$$

- Δp_A = Pressure loss at actual conditions (p_A , Q_A) in mbar
- Δp = Pressure loss at Q_{max} with natural gas at 1 bar in mbar (see table)

 ρ_N = Standard density of the gas in kg/m³

p_A = Operating pressure in bar (absolute)

 Q_A = Flow rate at actual conditions in m³/h

 Q_{max} = Maximum flow rate in m³/h (see table)

Example:

Air, ρ_N =1.29 kg/m³, nominal meter size DN 100, Q_{max} = 400 m³/h, p_A =1.1 bar(a), Q_A =250 m³/h. Take from the table: Δp =4 mbar. Hence:

$$\Delta p_A = 4 \cdot \frac{1.29}{0.83} \cdot 1.1 \cdot \left(\frac{250}{400}\right)^2 \text{mbar} = 2.7 \text{ mbar}$$

Nominal size DN		Max. flow rate Q _{max}	V _{LF} *	Δр	HF-pulse trans- mitter (option)			
mm	in.	m³/h	m ³	mbar	HF2	HF3		
50	2"	65 100	0,1 0,1	3 5	-	-		
80	3"	160 250 400	1 1 1	2 6 14	-	•		
100	4"	250 400 650	1 1 1	2 4 10	•	•		
150	6"	650 1000 1600	1 1 10	2 6 12	•	•		
200	8"	1600 2500	10 10	3 8	•	•		
250	10"	1600 2500 4000	10 10 10	2 3 7	•	•		
300	12"	4000 6500	10 10	4 9	•	•		
400	16"	6500 10000	10 10	3 8	•	•		
500	20"	10000 16000	10 100	4 9	•	•		
600	24"	16000 25000	100 100	4 9	•	•		

*V_{NF}: volume at actuall conditions per LF-pulse

- not available

 available for all pressure classes

__4

5

Types of gas, Mounting and operating instruction

Types of gas

The TRZ 03 standard design is suitable for use with all gases in compliance with the DVGW code of practice G260. The materials used are appropriate for gases and fuel gases, such as natural gas, refinery gas, gaseous liquid gases and their mixtures, nitrogen, CO₂ (dry), air and all inert gases.

For aggressive gases (e.g. biogas, acid gas or ethylene), there are special designs available with PTFE lining, special material, special lubrication, etc.

Mounting and operating instruction

The TRZ 03 turbine meters can be operated in horizontal or vertical position up to the nominal size of DN 150. For DN 200 the mounting position must be specified in the order. From the nominal size of DN 250, they can only be installed in a horizontal position.

Special instructions for startup and operation:

Turbine meters are precise measuring instruments and must therefore be carefully handled during transport, storage and operation.

Do not fill any downstream pipelines or station sections via the turbine meter. This may result in excessive flow rates with resultant damage to the turbine wheel.

The gas meter has been designed for short-term overload operation at up to 1.2 times the value of Q_{max} . Such load conditions should be avoided, however, in order to protect the TRZ 03 from any unnecessarily high flow rates. The gas flow must be free of shocks or pulsations, foreign particles, dust or liquids. Otherwise it is recommended that filters and separators be installed. No components affecting the gas flow are permitted directly upstream of the turbine meter (see DVGW guide-lines and PTB guideline G 13).

Perforated-plate straightener

In each case, an inlet pipe is required whose length as specified in the type approval may be shorter than that specified in the Technical Guideline G 13. The lengths of the inlet and outlet pipes must be at least 2 DN, while also a bend may be used as outlet pipe. If there is a heavy flow perturbation (e.g. due to a gas pressure controller) upstream of the inlet pipe, it is additionally necessary to use a perforated-plate straightener. There are perforated-plate straighteners available complying with ISO 5167-1 or of the type RMG LP-35, the latter resulting in a pressure loss which is 2.5 times lower than that of the standardized flow straightener.

Reducers or expansion fittings must be installed upstream of the inlet pipe and their opening angle must not exceed 30°.

The gas meter must be installed in weatherproof locations. For outside installations, appropriate guards must be provided against direct weathering influences.

Pulse outputs, Maintenance, Order information

Pulse outputs

6

The meter head is fitted with a reed contact as LF pulse transmitter as standard feature. But optionally, another two sensors can be fitted, e.g. another LF pulse transmitter (inductive sensor with output pulses complying with NAMUR or reed contact) and an HF1 pulse transmitter (NAMUR).

Connection is made by means of a 7-pin Binder plug:

1, 4: LF (reed contact) 2, 5: LF or HF 1signal 3, 6: HF1 (NAMUR)

If only one LF pulse transmitter is fitted, it is always connected to the contacts 1 and 4; a single HF1 pulse transmitter is always connected to the contacts 3 and 6. If high-frequency pulse transmitters (with output pulses complying with NAMUR) are fitted which scan either the turbine wheel (HF3) or the reference wheel (HF2), each of them is connected separately using a Binder plug at the front of the device:

All turbine meters are fitted with a lubricator (DN 50 through DN 150: permanent lubrication, from PN 25/ ANSI 300 pushbutton pump; DN 200: pushbutton pump; from DN 250: lever pump).

Lubrication must be performed in compliance with the operating instructions (see also the lubrication instruction plate of the gas meter). If clean gas is used, lubrication is to be performed at 3-month intervals, whereas lubrication must be performed more frequently if dustand/or condensate-laden gas is used.

Order information

- Nominal size of the pipeline
- Size G
- Operating pressure (min/max) in bar g or bar a
- Operating temperature (min/max)
- Ambient temperature (min/max)
- Type of gas to be used
- Pressure rating and DIN or ANSI flange design
- Direction of flow / mounting position
- Accessories: inlet section, volume corrector, etc.
- Options: HF pulse outputs, etc.
- Special designs, e.g. for aggressive gases

1, 3: HF2 or HF3 signal

The contacts 2 and 4 are not assigned.

All pulse transmitters are intrinsically safe and may be connected only to certified intrinsically safe circuits for use in areas subject to explosion hazards.

Maximum pulse transmitter frequencies:

LF:	0.3	Hz	HF1:	300 Hz						
HF2:	2.1	kHz	HF3:	2.1 kHz						
The phase displacement between the signals from the										
HF2 ar	nd H	F3 pulse transm	itters i	s 180°.						

7

Measuring ranges, dimensions, weights

Measuring ranges, dimensions, weights

DN mm	Sizes	Measuring range (m³/h)			Approx. weight (kg) pressure rating								Dimensions mm			
in.		Qr	nin	Q _{max}	PN					ANSI						
		1:20	1:30		10	16	25	40	64	100	150	300	600	Н	С	L
50 2"	G 65	10 ¹⁾	-	100	13	13	21	21	21	21	13	13	21 ²⁾	210	60	150
80 3"	G 100 G 160 G 250	16 ¹⁾ 13 20	- - -	160 250 400	20	20	25	25	34	34	20	25	36	230	96	240
100 4"	G 160 G 250 G 400	13 20 32	- - 20	250 400 650	25	25	32	32	45	45	30	35	55	270	120	300
150 6"	G 400 G 650 G 1000	32 50 80	- 32 50	650 1000 1600	50	50	60	60	70	90	50	65	100	285	180	450
200 8"	G 1000 G 1600	80 130	50 80	1600 2500	75	75	95	95	150	160	100	120	160	320	240	600
250 10"	G 1000 G 1600 G 2500	80 130 200	- 80 130	1600 2500 4000	100	110	135	150	180	225	110	160	260	330	300	750
300 12"	G 2500 G 4000	200 320	130 200	4000 6500	138	150	225	265	275	290	155	230	310	360	360	900
400 16"	G 4000 G 6500	320 500	200 320	6500 10000	280	290	350	440	525	580	350	460	575	400	480	1200
500 20"	G 6500 G 10000	500 800	320 500	10000 16000	560	610	640	700	830	1060	620	650	1075	450	600	1500
600 24"	G 10000 G 16000	800 1300	500 800	16000 25000	900	940	980	1075	1230	1570	950	1000	1600	500	720	1800

.....

¹⁾ Measuring range 1:10 ²⁾ Monoflange design

From DN 80 to DN 300, the turbine meters with a pressure rating of PN 10/16 can be fitted with a thermowell to accommodate a temperature sensor.

The table above shows the standard measuring ranges, which are derived from the PTB approval. Other measuring ranges according to the MID approval on request.

For More Information

To learn more about RMG's advanced gas solutions, contact your RMG account manager or visit www.rmg.com

GERMANY

Honeywell Process Solutions

RMG Regel + Messtechnik GmbH Osterholzstrasse 45 34123 Kassel, Germany Tel: +49 (0)561 5007-0 Fax: +49 (0)561 5007-107

Honeywell Process Solutions

RMG Messtechnik GmbH Otto-Hahn-Strasse 5 35510 Butzbach, Germany Tel: +49 (0)6033 897-0 Fax: +49 (0)6033 897-130

Honeywell Process Solutions

WÄGA Wärme-Gastechnik GmbH Osterholzstrasse 45 34123 Kassel, Germany Tel: +49 (0)561 5007-0 Fax: +49 (0)561 5007-207

ENGLAND

Honeywell Process Solutions

Bryan Donkin RMG Gas Controls Ltd. Enterprise Drive, Holmewood Chesterfield S42 5UZ, England Tel: +44 (0)1246 501-501 Fax: +44 (0)1246 501-500

CANADA

Honeywell Process Solutions

Bryan Donkin RMG Canada Ltd. 50 Clarke Street South, Woodstock Ontario N4S 0A8, Canada Tel: +1 (0)519 5398531 Fax: +1 (0)519 5373339

USA

Honeywell Process Solutions

Mercury Instruments LLC 3940 Virginia Avenue Cincinnati, Ohio 45227, USA Tel: +1 (0)513 272-1111 Fax: +1 (0)513 272-0211

TURKEY

Honeywell Process Solutions

RMG GAZ KONT. SIS. ITH. IHR. LTD. STI. Birlik Sanayi Sitesi, 6. Cd. 62. Sokak No: 7-8-9-10 TR - Sasmaz / Ankara, Turkey Tel: +90 (0)312 27810-80 Fax: +90 (0)312 27828-23

